Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Int ; 145: 106108, 2020 12.
Article in English | MEDLINE | ID: covidwho-741209

ABSTRACT

Disinfection of surfaces has been recommended as one of the most effective ways to combat the spread of novel coronavirus (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19). However, overexposure to disinfecting chemicals may lead to unintended human health risks. Here, using an indoor fate and chemical exposure model, we estimate human exposure to 22 disinfecting chemicals on the lists recommended by various governmental agencies against COVID-19, resulting from contact with disinfected surfaces and handwashing. Three near-field exposure routes, i.e., mouthing-mediated oral ingestion, inhalation, and dermal absorption, are considered to calculate the whole-body uptake doses and blood concentrations caused by single use per day for three age groups (3, 14, and 24-year-old). We also assess the health risks by comparing the predicted whole-body uptake doses with in vivo toxicological data and the predicted blood concentrations with in vitro bioactivity data. Our results indicate that both the total exposure and relative contribution of each exposure route vary considerably among the disinfecting chemicals due to their diverse physicochemical properties. 3-year-old children have consistent higher exposure than other age groups, especially in the scenario of contact with disinfected surfaces, due to their more frequent hand contact and mouthing activities. Due to the short duration of handwashing, we do not expect any health risk from the use of disinfecting chemicals in handwashing. In contrast, exposure from contact with disinfected surfaces may result in health risks for certain age groups especially children, even the surfaces are disinfected once a day. Interestingly, risk assessments based on whole-body uptake doses and in vivo toxicological data tend to give higher risk estimates than do those based on blood concentrations and in vitro bioactivity data. Our results reveal the most important exposure routes for disinfecting chemicals used in the indoor environment; they also highlight the need for more accurate data for both chemical properties and toxicity to better understand the risks associated with the increased use of disinfecting chemicals in the pandemic.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus , Disinfectants/adverse effects , Environmental Exposure , Pneumonia, Viral/prevention & control , Adult , Age Factors , Air Pollution, Indoor , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Disinfection , Female , Humans , Pandemics , Pneumonia, Viral/epidemiology , Risk Assessment , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL